Fechar

@PhDThesis{Seito:2015:MoSiRe,
               author = "Seito, Narumi",
                title = "Modelagem e simula{\c{c}}{\~a}o de rendezvous e docking",
               school = "Instituto Nacional de Pesquisas Espaciais (INPE)",
                 year = "2015",
              address = "S{\~a}o Jos{\'e} dos Campos",
                month = "2015-05-28",
             keywords = "encontro e acoplamento/atraca{\c{c}}{\~a}o, tecnologia 
                         rob{\'o}tica aeroespacial, equa{\c{c}}{\~a}o de 
                         Hill-Clohessy-Wiltshire, quat{\'e}rnio, 
                         parametriza{\c{c}}{\~a}o, rendezvous \& docking/berthing, 
                         aerospace robotics technology, Hill-Clohessy-Wiltshire equation, 
                         quaternion, parameterization.",
             abstract = "Esta tese tem como objetivo apresentar uma solu{\c{c}}{\~a}o 
                         para o problema de RVD/B (encontro e 
                         acoplamento/atraca{\c{c}}{\~a}o) entre duas espa{\c{c}}onaves, 
                         perseguidora e alvo, em {\'o}rbita. Depois de uma breve 
                         revis{\~a}o da literatura para contextualizar este trabalho, 
                         apresentam-se as estrat{\'e}gias de aproxima{\c{c}}{\~a}o, as 
                         t{\'e}cnicas de sincroniza{\c{c}}{\~a}o de {\'o}rbita e 
                         atitude, e a t{\'e}cnica de aproxima{\c{c}}{\~a}o de 
                         proximidade, sendo suportadas por dois sistemas de 
                         equa{\c{c}}{\~o}es diferenciais para os movimentos translacional 
                         e rotacional das espa{\c{c}}onaves. Duas 
                         configura{\c{c}}{\~o}es s{\~a}o consideradas para a 
                         espa{\c{c}}onave rob{\'o}tica perseguidora: uma, quando o 
                         manipulador rob{\'o}tico, nela incorporado, estiver inerte, e a 
                         outra, quando o manipulador rob{\'o}tico estiver em 
                         a{\c{c}}{\~a}o. Na primeira configura{\c{c}}{\~a}o, a 
                         formula{\c{c}}{\~a}o newtoniana {\'e} usada para obter as 
                         equa{\c{c}}{\~o}es da din{\^a}mica de transla{\c{c}}{\~a}o de 
                         Hill-Clohessy-Wiltshire, e o movimento de atitude {\'e} 
                         determinado pelas equa{\c{c}}{\~o}es de Euler. Estes dois 
                         sistemas de equa{\c{c}}{\~o}es obtidos acima permitem conduzir o 
                         perseguidor at{\'e} o espa{\c{c}}o de trabalho de 
                         atraca{\c{c}}{\~a}o do alvo. Na segunda 
                         configura{\c{c}}{\~a}o, a formula{\c{c}}{\~a}o de Lagrange, 
                         para quase-coordenadas e para coordenadas generalizadas, fornece 
                         as equa{\c{c}}{\~o}es do movimento do manipulador rob{\'o}tico 
                         para a atraca{\c{c}}{\~a}o no alvo. No equacionamento e na 
                         simula{\c{c}}{\~a}o num{\'e}rica das aberturas do manipulador 
                         rob{\'o}tico, reside a originalidade da tese. As 
                         simula{\c{c}}{\~o}es computacionais da din{\^a}mica de ambas as 
                         configura{\c{c}}{\~o}es foram implementadas utilizando-se o 
                         pacote de software MatLab. ABSTRACT: In this thesis strategies to 
                         solve the problem of the RVD/B (RendezVous and Docking/Berthing) 
                         orbital operations are studied. In a brief review of the 
                         literature, the strategies of approximation, the techniques for 
                         orbit and attitude synchronization, and the technique for the 
                         close proximity approximation are presented, all of them supported 
                         by two systems of differential equations for the translational and 
                         rotational motion of both spacecrafts. Two configurations are 
                         considered for the chaser: one when the robotic manipulator of the 
                         chaser is inert, and a second one when the robotic manipulator is 
                         in action. In the first configuration the Newtonian formulation is 
                         used to obtain the equations of Hill-Clohessy-Klein for the 
                         translational dynamics, while the attitude motion is determined by 
                         Eulers equations. These two systems of differential equations 
                         allow to guide the chaser up to the point for berthing the target. 
                         In the second configuration, the Lagrangian formulation for 
                         quasi-coordinates and generalized coordinates supplies the 
                         equations for the motion of the robotic manipulator when berthing 
                         the target. These latter equations and their numerical simulation 
                         of berthing the target are the original part of this thesis. The 
                         computational simulations of the dynamics are carried out by use 
                         of the software MatLab.",
            committee = "Rocco, Evandro Marconi (presidente) and Fonseca, Ijar Milagre da 
                         (orientador) and Saotome, Osamu (orientador) and G{\'o}es, Luiz 
                         Carlos Sandoval and Pontuschka, Maur{\'{\i}}cio Nacib",
           copyholder = "SID/SCD",
         englishtitle = "Modeling and simulation of rendezvous and docking/berthing",
             language = "pt",
                pages = "139",
                  ibi = "8JMKD3MGP3W34P/3JK5DS8",
                  url = "http://urlib.net/ibi/8JMKD3MGP3W34P/3JK5DS8",
           targetfile = "publicacao.pdf",
        urlaccessdate = "27 abr. 2024"
}


Fechar